Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 590
Filtrar
1.
World J Microbiol Biotechnol ; 40(6): 181, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668833

RESUMO

In view of the extensive potential applications of chitinase (ChiA) in various fields such as agriculture, environmental protection, medicine, and biotechnology, the development of a high-yielding strain capable of producing chitinase with enhanced activity holds significant importance. The objective of this study was to utilize the extracellular chitinase from Bacillus thuringiensis as the target, and Bacillus licheniformis as the expression host to achieve heterologous expression of ChiA with enhanced activity. Initially, through structural analysis and molecular dynamics simulation, we identified key amino acids to improve the enzymatic performance of chitinase, and the specific activity of chitinase mutant D116N/E118N was 48% higher than that of the natural enzyme, with concomitant enhancements in thermostability and pH stability. Subsequently, the expression elements of ChiA(D116N/E118N) were screened and modified in Bacillus licheniformis, resulting in extracellular ChiA activity reached 89.31 U/mL. Further efforts involved the successful knockout of extracellular protease genes aprE, bprA and epr, along with the gene clusters involved in the synthesis of by-products such as bacitracin and lichenin from Bacillus licheniformis. This led to the development of a recombinant strain, DW2△abelA, which exhibited a remarkable improvement in chitinase activity, reaching 145.56 U/mL. To further improve chitinase activity, a chitinase expression frame was integrated into the genome of DW2△abelA, resulting in a significant increas to 180.26 U/mL. Optimization of fermentation conditions and medium components further boosted shake flask enzyme activity shake flask enzyme activity, achieving 200.28 U/mL, while scale-up fermentation experiments yielded an impressive enzyme activity of 338.79 U/mL. Through host genetic modification, expression optimization and fermentation optimization, a high-yielding ChiA strain was successfully constructed, which will provide a solid foundation for the extracellular production of ChiA.


Assuntos
Bacillus licheniformis , Proteínas de Bactérias , Quitinases , Quitinases/genética , Quitinases/metabolismo , Quitinases/biossíntese , Bacillus licheniformis/genética , Bacillus licheniformis/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Bacillus thuringiensis/genética , Bacillus thuringiensis/enzimologia , Estabilidade Enzimática , Simulação de Dinâmica Molecular , Família Multigênica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura , Bacitracina
2.
World J Microbiol Biotechnol ; 40(6): 182, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668902

RESUMO

The effect of barium ions on the biomineralization of calcium and magnesium ions is often overlooked when utilizing microbial-induced carbonate precipitation technology for removing barium, calcium, and magnesium ions from oilfield wastewater. In this study, Bacillus licheniformis was used to bio-precipitate calcium, magnesium, and barium ions. The effects of barium ions on the physiological and biochemical characteristics of bacteria, as well as the components of extracellular polymers and mineral characteristics, were also studied in systems containing coexisting barium, calcium, and magnesium ions. The results show that the increasing concentrations of barium ions decreased pH, carbonic anhydrase activity, and concentrations of bicarbonate and carbonate ions, while it increased the contents of humic acids, proteins, polysaccharides, and DNA in extracellular polymers in the systems containing all three types of ions. With increasing concentrations of barium ions, the content of magnesium within magnesium-rich calcite and the size of minerals precipitated decreased, while the full width at half maximum of magnesium-rich calcite, the content of O-C=O and N-C=O, and the diversity of protein secondary structures in the minerals increased in systems containing all three coexisting ions. Barium ions does inhibit the precipitation of calcium and magnesium ions, but the immobilized bacteria can mitigate the inhibitory effect. The precipitation ratios of calcium, magnesium, and barium ions reached 81-94%, 68-82%, and 90-97%. This research provides insights into the formation of barium-enriched carbonate minerals and offers improvements for treating oilfield wastewater.


Assuntos
Bacillus licheniformis , Bário , Biomineralização , Cálcio , Magnésio , Magnésio/metabolismo , Bacillus licheniformis/metabolismo , Bário/metabolismo , Cálcio/metabolismo , Águas Residuárias/microbiologia , Águas Residuárias/química , Concentração de Íons de Hidrogênio , Íons , Anidrases Carbônicas/metabolismo , Carbonato de Cálcio/metabolismo
3.
Curr Microbiol ; 81(5): 132, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592497

RESUMO

Abiotic stresses threaten the strategic crops of Poaceae (Gramineae) worldwide. Habitat-adapted microbiome of wild plants has the potential to alleviate abiotic stresses in alternate hosts. Persian Gulf's coastal deserts are colonized by halophyte plants hosting habitat-adapted halophytic microbiota. Here, endophytic bacteria from wild Poaceae in coastal deserts of the north Persian Gulf at Hormozgan province, Iran, were isolated and screened for mitigating salinity stress in wheat. Accordingly, seven dominant species of wild Poaceae in the region, i.e., Aeloropus lagopoides, Aeloropus litiralis, Chrysopogon aucheri, Cymbopogon olivieri, Desmostachya sp., Halopayrum mucronatum, and Sporbuls arabicus, were explored. In total, 367 endophytic bacteria were isolated, 90 of which tolerated 2.5-M NaCl. Of these, 38 strains were selected based on their bioactivity and applied for in vitro wheat-interaction assays under 250-mM NaCl stress. Five superior strains promoted seed germination and growth indices in rain-fed winter wheat cv. Sardari, i.e., Bacillus subtilis B14, B19, & B27, Bacillus sp. B21, and Bacillus licheniformis Ba38. In planta assays in saline soil (2.7 dS m-1) using the superior strains indicated that Bacillus sp. B21 and Bacillus licheniformis Ba38 increased germination and root and shoot lengths and their dry and fresh weights in wheat seedlings. Moreover, phenolics and flavonoids contents of wheat seedlings were influenced by endophyte application. Thus, the coastal desert-adapted microbiome of wild Poaceae could alleviate abiotic stress and promote growth in cultivated species of Poaceae, such as wheat.


Assuntos
Bacillus licheniformis , Bacillus , Microbiota , Triticum , Poaceae , Plantas Tolerantes a Sal , Endófitos , Cloreto de Sódio , Estresse Salino , Bacillus subtilis
4.
Open Vet J ; 14(1): 144-153, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633157

RESUMO

Background: A commercially significant species in the aquaculture sector globally, particularly in Egypt, is Litopenaeus vannamei. Aim: The experiment's objective was to ascertain how Sanolife PRO-F impacted the growth, water quality, immunological response, and intestinal morphometry of L. vannamei. Methods: In the current investigation, which lasted 12 weeks, Sanolife PRO-F was administered to shrimp post-larvae at diet doses of 0 (control), 1 (group one), 2 (group two), and 3 (group three) g/kg diet, respectively. Each experimental group had three repetitions. Results: In the current study, shrimp fed on probiotic-treated diets showed a considerable improvement in growth performance measures and survival rate, and the nonspecific immune response was also enhanced. Shrimp fed probiotic diets had longer and more intestinal villi overall. Shrimp fed on the G2 and G3 diets showed no appreciable differences in growth or intestinal morphology. With the G2 and G3 diet, the water had lower concentrations of nitrite and ammonia. Conclusion: The study's findings indicate that Sanolife PRO-F treatment at 2-3 g/kg feed promotes the growth of shrimp, immunological response, gut health and function, and water quality.


Assuntos
Bacillus licheniformis , Bacillus pumilus , Penaeidae , Probióticos , Animais , Bacillus subtilis , Qualidade da Água , Imunidade Inata , Penaeidae/fisiologia , Probióticos/farmacologia
5.
J Environ Sci (China) ; 143: 189-200, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38644016

RESUMO

Microbial activity and interaction are the important driving factors in the start-up phase of food waste composting at low temperature. The aim of this study was to explore the effect of inoculating Bacillus licheniformis on the degradation of organic components and the potential microbe-driven mechanism from the aspects of organic matter degradation, enzyme activity, microbial community interaction, and microbial metabolic function. The results showed that after inoculating B. licheniformis, temperature increased to 47.8°C on day 2, and the degradation of readily degraded carbohydrates (RDC) increased by 31.2%, and the bioheat production increased by 16.5%. There was an obvious enhancement of extracellular enzymes activities after inoculation, especially amylase activity, which increased by 7.68 times on day 4. The inoculated B. licheniformis colonized in composting as key genus in the start-up phase. Modular network analysis and Mantel test indicated that inoculation drove the cooperation between microbial network modules who were responsible for various organic components (RDC, lipid, protein, and lignocellulose) degradation in the start-up phase. Metabolic function prediction suggested that carbohydrate metabolisms including starch and sucrose metabolism, glycolysis / gluconeogenesis, pyruvate metabolism, etc., were improved by increasing the abundance of related functional genes after inoculation. In conclusion, inoculating B. licheniformis accelerated organic degradation by driving the cooperation between microbial network modules and enhancing microbial metabolism in the start-up phase of composting.


Assuntos
Bacillus licheniformis , Compostagem , Bacillus licheniformis/metabolismo , Compostagem/métodos , Microbiologia do Solo , Biodegradação Ambiental , Microbiota/fisiologia , Temperatura Baixa
6.
Int J Food Microbiol ; 416: 110660, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38460236

RESUMO

The spoilage bacterium Bacillus licheniformis has been identified as a quick and strong biofilm former in the dairy industry. In our previous study, intra-species variation in bacterial biofilms has been observed in diverse B. licheniformis strains from different genetic backgrounds; however, the mechanisms driving the observed heterogeneity of biofilms remain to be determined. In this study, the genotype-phenotype evaluation of the heterogeneity in biofilm formation of four B. licheniformis strains were examined. The heterogeneity in biofilm phenotype was accessed in aspects of bacterial growth and motility, cell viability, biofilm matrix production, and biofilm architectures. The underlying mechanisms of the intra-species variability in biofilms were also explored by whole genome resequencing (WGR). Results from bacterial motility tests showed a diverse motility among the strains, but there was no clear correlation between bacterial motility and biofilm formation. The cell viability results showed a different number of live cells in biofilms at the intra-species level. Analysis of chemical components in biofilm matrix demonstrated the great intra-species differences regarding extracellular matrix composition, and a negative correlation between biofilm formation on stainless steel and the protein: carbohydrate ratio in biofilm matrix was observed. Confocal laser scanning microscopy analysis also revealed the intra-species variability by showing great differences in general properties of B. licheniformis biofilms. WGR results identified important pathways involved in biofilm formation, such as two-component systems, quorum sensing, starch and sucrose metabolism, ABC transporters, glyoxylate and dicarboxylate metabolism, purine metabolism, and a phosphotransferase system. Overall, the above results emphasize the necessity of exploring the intra-species variation in biofilms, and would provide in-depth knowledge for designing efficient biofilm control strategies in the dairy industry.


Assuntos
Bacillus licheniformis , Laticínios/microbiologia , Biofilmes , Bactérias , Genótipo
7.
Int J Biol Macromol ; 265(Pt 2): 130909, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492695

RESUMO

Microbial amphiphiles play an important role in environmental activities such as microbial signaling, bioremediation, and biofilm formation. Microorganisms rely on their unique characteristics of interfaces to carry out critical biological functions, which are helped by amphipathic biomolecules known as amphiphiles. Bacillus amyloids aid in cell adhesion and biofilm formation. Pseudomonas sp. are essential in biofilm development and are a vital survival strategy for many bacteria. Furthermore, Pseudomonas and Bacillus are well-known for their ability to produce biosurfactants with a range of applications, including bioremediation and removing biological pollutants from different environments. The study employed 31 different media types and a range of analytical techniques to assess the presence of amyloid proteins and the absence of biosurfactants in Bacillus licheniformis K125 (GQ850525.1) and Pseudomonas fluorescens CHA0. The presence of amyloid proteins was confirmed through Congo red and thioflavin T staining. The carefully constructed medium also efficiently inhibited the synthesis of biosurfactants by these bacteria. Additionally, surface tension measurements, emulsification index, thin-layer chromatography, and high-performance thin-layer chromatography analyses indicated the absence of biosurfactants in the tested media.


Assuntos
Bacillus licheniformis , Bacillus , Bacillus/metabolismo , Bactérias/metabolismo , Bacillus licheniformis/metabolismo , Biofilmes , Proteínas Amiloidogênicas/metabolismo , Tensoativos/química
8.
Arch Microbiol ; 206(4): 143, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443732

RESUMO

The probiotic strain Bacillus licheniformis MCC2514 has been shown to produce a strong antibacterial peptide and the whole genome sequence of this strain is also reported in our previous study. The present study is focused on the genome level investigation of this peptide antibiotic and its characterization. Genome mining of the culture revealed the presence of three putative bacteriocin clusters, viz. lichenicidin, sonorensin and lasso peptide. Hence, the mode of action of the peptide was investigated by reporter assay, scanning electron microscopy, and Fourier Transform Infrared spectroscopy. Additionally, the peptide treated groups of Kocuria rhizophila showed a reduction in the fold expression for transcription-related genes. The gene expression studies, quantitative ß-galactosidase induction assay using the RNA stress reporter strain, yvgS along with the homology studies concluded that lasso peptide is responsible for the antibacterial activity of the peptide which acts as an inhibitor of RNA biosynthesis. Gene expression analysis showed a considerable increase in fold expression of lasso peptide genes at various fermentation hours. Also, the peptide was isolated, and its time-kill kinetics and minimum inhibitory concentration against the indicator pathogen K. rhizophila were examined. The peptide was also purified and the molecular weight was determined to be ~ 2 kDa. Our study suggests that this bacteriocin can function as an effective antibacterial agent in food products as well as in therapeutics as it contains lasso peptide, which inhibits the RNA biosynthesis.


Assuntos
Bacillus licheniformis , Bacteriocinas , Bacillus licheniformis/genética , Família Multigênica , Antibacterianos/farmacologia , Bacteriocinas/genética , Bacteriocinas/farmacologia , Peptídeos , RNA
9.
Food Res Int ; 182: 114145, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519175

RESUMO

Bacillus licheniformis, a quick and strong biofilm former, is served as a persistent microbial contamination in the dairy industry. Its biofilm formation process is usually regulated by environmental factors including the divalent cation Ca2+. This work aims to investigate how different concentrations of Ca2+ change biofilm-related phenotypes (bacterial motility, biofilm-forming capacity, biofilm structures, and EPS production) of dairy B. licheniformis strains. The Ca2+ ions dependent regulation mechanism for B. licheniformis biofilm formation was further investigated by RNA-sequencing analysis. Results revealed that supplementation of Ca2+ increased B. licheniformis biofilm formation in a dose-dependent way, and enhanced average coverage and thickness of biofilms with complex structures were observed by confocal laser scanning microscopy. Bacterial mobility of B. licheniformis was increased by the supplementation of Ca2+ except the swarming ability at 20 mM of Ca2+. The addition of Ca2+ decreased the contents of polysaccharides but promoted proteins production in EPS, and the ratio of proteins/polysaccharides content was significantly enhanced with increasing Ca2+ concentrations. RNA-sequencing results clearly indicated the variation in regulating biofilm formation under different Ca2+ concentrations, as 939 (671 upregulated and 268 downregulated) and 951 genes (581 upregulated and 370 downregulated) in B. licheniformis BL2-11 were induced by 10 and 20 mM of Ca2+, respectively. Differential genes were annotated in various KEGG pathways, including flagellar assembly, two-component system, quorum sensing, ABC transporters, and related carbohydrate and amino acid metabolism pathways. Collectively, the results unravel the significance of Ca2+ as a biofilm-promoting signal for B. licheniformis in the dairy industry.


Assuntos
Bacillus licheniformis , Bacillus licheniformis/genética , Cálcio , Laticínios/microbiologia , Biofilmes , Bactérias/genética , Polissacarídeos , RNA
10.
Bioresour Technol ; 398: 130534, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452953

RESUMO

Bacillus licheniformis is widely utilized in disease prevention and environmental remediation. Spore quantity is a critical factor in determining the quality of microbiological agents containing vegetative cells. To improve the understanding of Bacillus licheniformis BF-002 strain culture, a hybrid model integrating traditional dynamic modeling and recurrent neural network was developed. This model enabled the optimization of carbon/nitrogen source feeding rates, pH, temperature and agitation speed using genetic algorithms. Carbon and nitrogen source consumption in the optimal duplicate batches showed no significant difference compared to the control batch. However, the spore quantity in the broth increased by 16.2% and 35.2% in the respective duplicate batches. Overall, the hybrid model outperformed the traditional dynamic model in accurately tracking the cultivation dynamics of Bacillus licheniformis, leading to increased spore production when used for optimizing cultivation conditions.


Assuntos
Bacillus licheniformis , Bacillus licheniformis/genética , Esporos Bacterianos/genética , Temperatura , Carbono , Nitrogênio
11.
Biotechnol Bioeng ; 121(5): 1642-1658, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38381097

RESUMO

Bacillus licheniformis formulations are effective for environmental remediation, gut microbiota modulation, and soil improvement. An adequate spore quantity is crucial for the activity of B. licheniformis formulations. This study investigated the synergistic effects of carbon/nitrogen source consumption and concentration on B. licheniformis BF-002 cultivation, with the aim of developing an automatic co-feeding strategy to enhance spore production. Initial glucose (10 g/L) and amino nitrogen (1.5 g/L) concentrations promote cell growth, followed by reduced glucose (2.0 g/L) and amino nitrogen (0.5 g/L) concentrations for sustained spore generation. The spore quantity reached 2.59 × 1010 CFU/mL. An automatic co-feeding strategy was developed and implemented in 5 and 50 L cultivations, resulting in spore quantities of 2.35 × 1010 and 2.86 × 1010 CFU/mL, respectively, improving by 6.81% and 30.00% compared to that with a fixed glucose concentration (10.0 g/L). The culture broth obtained at both the 5 and 50 L scales was spray-dried, resulting in bacterial powder with cell viability rates of 85.94% and 82.68%, respectively. Even after exposure to harsh conditions involving high temperature and humidity, cell viability remained at 72.80% and 69.89%, respectively. Employing the automatic co-feeding strategy increased the transcription levels of the spore formation-related genes spo0A, spoIIGA, bofA, and spoIV by 7.42%, 8.46%, 8.87%, and 9.79%, respectively. The proposed strategy effectively promoted Bacillus growth and spore formation, thereby enhancing the quality of B. licheniformis formulations.


Assuntos
Bacillus licheniformis , Bacillus , Carbono , Nitrogênio , Esporos Bacterianos , Bacillus/genética , Bacillus licheniformis/genética , Glucose
12.
J Hazard Mater ; 468: 133836, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38394902

RESUMO

Global aflatoxin B1 (AFB1) contamination is inevitable, and it can significantly damage testicular development. However, the current mechanism is confusing. Here, by integrating the transcriptome, microbiome, and serum metabolome, we comprehensively explain the impact of AFB1 on testis from the gut-metabolism-testis axis. Transcriptome analysis suggested that AFB1 exposure directly causes abnormalities in testicular inflammation-related signalling, such as tumor necrosis factor (TNF) pathway, and proliferation-related signalling pathways, such as phosphatidylinositide 3-kinases-protein kinase B (PI3K-AKT) pathway, which was verified by immunofluorescence. On the other hand, we found that upregulated inflammatory factors in the intestine after AFB1 exposure were associated with intestinal microbial dysbiosis, especially the enrichment of Bacilli, and enrichment analysis showed that this may be related to NLR family pyrin domain containing 3 (NLRP3)-mediated NOD-like receptor signalling. Also, AFB1 exposure caused blood metabolic disturbances, manifested as decreased hormone levels and increased oxidative stress. Significantly, B. licheniformis has remarkable AFB1 degradation efficiency (> 90%). B. licheniformis treatment is effective in attenuating gut-testis axis damage caused by AFB1 exposure through the above-mentioned signalling pathways. In conclusion, our findings indicate that AFB1 exposure disrupts testicular development through the gut-metabolism-testis axis, and B. licheniformis can effectively degrade AFB1.


Assuntos
Bacillus licheniformis , Testículo , Masculino , Humanos , Aflatoxina B1/toxicidade , Aflatoxina B1/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Metaboloma
13.
Artigo em Inglês | MEDLINE | ID: mdl-38253396

RESUMO

Amylosucrase (EC 2.4.1.4) is a versatile enzyme with significant potential in biotechnology and food production. To facilitate its efficient preparation, a novel expression strategy was implemented in Bacillus licheniformis for the secretory expression of Neisseria polysaccharea amylosucrase (NpAS). The host strain B. licheniformis CBBD302 underwent genetic modification through the deletion of sacB, a gene responsible for encoding levansucrase that synthesizes extracellular levan from sucrose, resulting in a levan-deficient strain, B. licheniformis CBBD302B. Neisseria polysaccharea amylosucrase was successfully expressed in B. licheniformis CBBD302B using the highly efficient Sec-type signal peptide SamyL, but its extracellular translocation was unsuccessful. Consequently, the expression of NpAS via the twin-arginine translocation (TAT) pathway was investigated using the signal peptide SglmU. The study revealed that NpAS could be effectively translocated extracellularly through the TAT pathway, with the signal peptide SglmU facilitating the process. Remarkably, 62.81% of the total expressed activity was detected in the medium. This study marks the first successful secretory expression of NpAS in Bacillus species host cells, establishing a foundation for its future efficient production. ONE-SENTENCE SUMMARY: Amylosucrase was secreted in Bacillus licheniformis via the twin-arginine translocation pathway.


Assuntos
Bacillus licheniformis , Glucosiltransferases , Neisseria , Bacillus licheniformis/metabolismo , Sinais Direcionadores de Proteínas/genética , Frutanos , Arginina , Proteínas de Bactérias/genética
14.
Appl Environ Microbiol ; 90(2): e0146823, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38193675

RESUMO

Bacillus spp., a class of aerobic bacteria, is widely used as a biocontrol microbe in the world. However, the reactive oxygen species (ROS) will accumulate once the aerobic bacteria are exposed to environmental stresses, which can decrease cell activity or lead to cell death. Hydroxyl radical (·OH), the strongest oxide in the ROS, can damage DNA directly, which is generated through Fenton Reaction by H2O2 and free iron. Here, we proved that the synthesis of pulcherriminic acid (PA), an iron chelator produced by Bacillus spp., could reduce DNA damage to protect cells from oxidative stress by sequestrating excess free iron, which enhanced the cell survival rates in stressful conditions (salt, antibiotic, and high temperature). It was worth noting that the synthesis of PA was found to be increased under oxidative stress. Thus, we demonstrated that the YvmB, a direct negative regulator of PA synthesis cluster yvmC-cypX, could be oxidized at cysteine residue (C57) to form a dimer losing the DNA-binding activity, which led to an improvement in PA production. Collectively, our findings highlight that YvmB senses ROS to regulate PA synthesis is one of the evolved proactive defense systems in bacteria against adverse environments.IMPORTANCEUnder environment stress, the electron transfer chain will be perturbed resulting in the accumulation of H2O2 and rapidly transform to ·OH through Fenton Reaction. How do bacteria deal with oxidative stress? At present, several iron chelators have been reported to decrease the ·OH generation by sequestrating iron, while how bacteria control the synthesis of iron chelators to resist oxidative stress is still unclear. Our study found that the synthesis of iron chelator PA is induced by reactive oxygen species (ROS), which means that the synthesis of iron chelator is a proactive defense mechanism against environment stress. Importantly, YvmB is the first response factor found to protect cells by reducing the ROS generation, which present a new perspective in antioxidation studies.


Assuntos
Bacillus licheniformis , Bacillus , Espécies Reativas de Oxigênio/metabolismo , Bacillus licheniformis/metabolismo , Peróxido de Hidrogênio , Estresse Oxidativo , Ferro/metabolismo , Quelantes de Ferro , Bacillus/metabolismo , DNA/metabolismo
15.
Curr Microbiol ; 81(2): 62, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216774

RESUMO

Microbial contamination of coffee beans arises from various factors such as harvesting, handling, and storage practices, during which ochratoxin A (OTA)-producing fungi develop and proliferate. The presence of elevated concentrations of OTA poses a serious health risk to coffee consumers. Therefore, the implementation of a post-harvest treatment involving the use of bacteria known to antagonize OTA-producing fungi constitutes a safe alternative for reducing or eliminating the toxin's concentration in coffee beans. In this study, coffee beans (Coffea arabica L.) were inoculated with Bacillus licheniformis M2-7, after which we monitored fungal growth, in vitro antagonism, and OTA concentration. Our findings demonstrated that coffee beans inoculated with this bacterial strain exhibited a significant decrease in fungal populations belonging to the genera Aspergillus and Penicillium, which are known to produce OTA. Moreover, strain M2-7 decreased the growth rates of these fungi from 67.8% to 95.5% (P < 0.05). Similarly, inoculation with B. licheniformis strain M2-7 effectively reduced the OTA concentration from 24.35 ± 1.61 to 5.52 ± 1.69 µg/kg (P < 0.05) in stored coffee beans. These findings suggest that B. licheniformis M2-7 holds promise as a potential post-harvest treatment for coffee beans in storage, as it effectively inhibits the proliferation of OTA-producing fungi and lowers the toxin's concentration.


Assuntos
Bacillus licheniformis , Coffea , Ocratoxinas , Contaminação de Alimentos/análise , Coffea/microbiologia
16.
Int J Mol Sci ; 25(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38203732

RESUMO

Despite Bacillus species having been extensively utilized in the food industry and biocontrol as part of probiotic preparations, limited knowledge exists regarding their impact on intestinal disorders. In this study, we investigated the effect of Bacillus licheniformis ZW3 (ZW3), a potential probiotic isolated from camel feces, on dextran sulfate sodium (DSS)-induced colitis. The results showed ZW3 partially mitigated body weight loss, disease activity index (DAI), colon shortening, and suppressed immune response in colitis mice, as evidenced by the reduction in the levels of the inflammatory markers IL-1ß, TNF-α, and IL-6 (p < 0.05). ZW3 was found to ameliorate DSS-induced dysfunction of the colonic barrier by enhancing mucin 2 (MUC2), zonula occluden-1 (ZO-1), and occludin. Furthermore, enriched beneficial bacteria Lachnospiraceae_NK4A136_group and decreased harmful bacteria Escherichia-Shigella revealed that ZW3 improved the imbalanced gut microbiota. Abnormally elevated uric acid levels in colitis were further normalized upon ZW3 supplementation. Overall, this study emphasized the protective effects of ZW3 in colitis mice as well as some potential applications in the management of inflammation-related diseases.


Assuntos
Bacillus licheniformis , Bacillus , Colite , Probióticos , Animais , Camundongos , Colite/induzido quimicamente , Colite/terapia , Camelus , Homeostase , Probióticos/farmacologia , Probióticos/uso terapêutico
17.
Appl Microbiol Biotechnol ; 108(1): 139, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229401

RESUMO

Gut microorganism (GM) is an integral component of the host microbiome and health system. Abuse of antibiotics disrupts the equilibrium of the microbiome, affecting environmental pathogens and host-associated bacteria alike. However, relatively little research on Bacillus licheniformis alleviates the adverse effects of antibiotics. To test the effect of B. licheniformis as a probiotic supplement against the effects of antibiotics, cefalexin was applied, and the recovery from cefalexin-induced jejunal community disorder and intestinal barrier damage was investigated by pathology, real-time PCR (RT-PCR), and high-throughput sequencing (HTS). The result showed that A group (antibiotic treatment) significantly reduced body weight and decreased the length of jejunal intestinal villi and the villi to crypt (V/C) value, which also caused structural damage to the jejunal mucosa. Meanwhile, antibiotic treatment suppressed the mRNA expression of tight junction proteins ZO-1, claudin, occludin, and Ki67 and elevated MUC2 expression more than the other Groups (P < 0.05 and P < 0.01). However, T group (B. licheniformis supplements after antibiotic treatment) restored the expression of the above genes, and there was no statistically significant difference compared to the control group (P > 0.05). Moreover, the antibiotic treatment increased the relative abundance of 4 bacterial phyla affiliated with 16 bacterial genera in the jejunum community, including the dominant Firmicutes, Proteobacteria, and Cyanobacteria in the jejunum. B. licheniformis supplements after antibiotic treatment reduced the relative abundance of Bacteroidetes and Proteobacteria and increased the relative abundance of Firmicutes, Epsilonbacteraeota, Lactobacillus, and Candidatus Stoquefichus. This study uses mimic real-world exposure scenarios by considering the concentration and duration of exposure relevant to environmental antibiotic contamination levels. We described the post-antibiotic treatment with B. licheniformis could restore intestinal microbiome disorders and repair the intestinal barrier. KEY POINTS: • B. licheniformis post-antibiotics restore gut balance, repair barrier, and aid health • Antibiotics harm the gut barrier, alter structure, and raise disease risk • Long-term antibiotics affect the gut and increase disease susceptibility.


Assuntos
Bacillus licheniformis , Enteropatias , Probióticos , Animais , Camundongos , Bovinos , Antibacterianos/farmacologia , Suplementos Nutricionais , Probióticos/farmacologia , Enteropatias/microbiologia , Firmicutes/genética , Cefalexina
18.
BMC Genom Data ; 25(1): 3, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166625

RESUMO

OBJECTIVES: The data presented in this study were collected with the aim of obtaining the complete genomes of specific strains of Bacillus bacteria, namely, Bacillus licheniformis T5. This strain was chosen based on its enzymatic activities, particularly amylolytic activity. In this study, nanopore sequencing technology was employed to obtain the genome sequences of this strain. It is important to note that these data represent a focused objective within a larger research context, which involves exploring the biochemical features of promising Bacilli strains and investigating the relationship between enzymatic activity, phenotypic features, and the microorganism's genome. DATA DESCRIPTION: In this study, the whole-genome sequence was obtained from one Bacillus strain, Bacillus licheniformis T5, isolated from soil samples in Kazakhstan. Sample preparation and genomic DNA library construction were performed according to the Ligation sequencing gDNA kit (SQK-LSK109) protocol and NEBNext module. The prepared library was sequenced on a MinION instrument (Oxford Nanopore Technologies nanopore sequencer with a maximum throughput of up to 30 billion nucleotides per run and no limit on read length), using a flow cell for nanopore sequencing FLO-MIN106D. The genome de novo assembly was performed using the long sequencing reads generated by MinION Oxford Nanopore platform. Finally, one circular contig was obtained harboring a length of 4,247,430 bp with 46.16% G + C content and the mean contig 428X coverage. B. licheniformis T5 genome assembly annotation revealed 5391 protein-coding sequences, 81 tRNAs, 51 repeat regions, 24 rRNAs, 3 virulence factors and 53 antibiotic resistance genes. This sequence encompasses the complete genetic information of the strain, including genes, regulatory elements, and noncoding regions. The data reveal important insights into the genetic characteristics, phenotypic traits, and enzymatic activity of this Bacillus strain. The findings of this study have particular value to researchers interested in microbial biology, biotechnology, and antimicrobial studies. The genomic sequence offers a foundation for understanding the genetic basis of traits such as endospore formation, alkaline tolerance, temperature range for growth, nutrient utilization, and enzymatic activities. These insights can contribute to the development of novel biotechnological applications, such as the production of enzymes for industrial purposes. Overall, this study provides valuable insights into the genetic characteristics, phenotypic traits, and enzymatic activities of the Bacillus licheniformis T5 strain. The acquired genomic sequences contribute to a better understanding of this strain and have implications for various research fields, such as microbiology, biotechnology, and antimicrobial studies.


Assuntos
Anti-Infecciosos , Bacillus licheniformis , Análise de Sequência de DNA/métodos , Bacillus licheniformis/genética , Cazaquistão , Genoma
19.
Appl Microbiol Biotechnol ; 108(1): 89, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38194145

RESUMO

The industrial bacterium Bacillus licheniformis has long been used as a microbial factory for the production of enzymes due to its ability to secrete copious amounts of native extracellular proteins and its generally regarded as safe (GRAS) status. However, most attempts to use B. licheniformis to produce heterologous and cytoplasmic enzymes primarily via the general secretory (Sec) pathway have had limited success. The twin-arginine transport (Tat) pathway offers a promising alternative for the extracellular export of Sec-incompatible proteins because it transports full, correctly folded proteins. However, compared to the Sec pathway, the yields of the Tat pathway have historically been too low for commercial use. To improve the export efficiency of the Tat pathway, we identified the optimal Tat-dependent signal peptides and increased the abundance of the Tat translocases, the signal peptidase (SPase), and the intracellular chaperones. These strategic modifications significantly improved the Tat-dependent secretion of the cytoplasmic enzyme arginase into the culture medium using B. licheniformis. The extracellular enzymatic activity of arginase showed a 5.2-fold increase after these modifications. Moreover, compared to the start strain B. licheniformis 0F3, the production of extracellular GFP was improved by 3.8 times using the strategic modified strain B. licheniformis 0F13, and the extracellular enzymatic activity of SOX had a 1.3-fold increase using the strain B. licheniformis 0F14. This Tat-based production chassis has the potential for enhanced production of Sec-incompatible enzymes, therefore expanding the capability of B. licheniformis as an efficient cellular factory for the production of high-value proteins. KEY POINTS: • Systematic genetic modification of Tat-pathway in B. licheniformis. • Significant enhancement of the secretion capacity of Tat pathway for delivery the cytoplasmic enzyme arginase. • A new platform for efficient extracellular production of Sec-incompatible enzymes.


Assuntos
Arginase , Bacillus licheniformis , Via Secretória/genética , Bacillus licheniformis/genética , Citoplasma , Citosol
20.
Bioorg Chem ; 143: 107068, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181659

RESUMO

α-Amylase is a secretory enzyme commonly found in nature. The α-Amylase enzyme catalyzes the hydrolysis of α-D-(1,4)-glucosidic bonds in starch, glycogen, and polysaccharides. The chemical characterization of the composite carrier and the immobilized enzyme was performed, and the accuracy of the immobilization was confirmed by FTIR, SEM, and EDS analyses. The X-ray diffraction (XRD) analysis indicates that the magnetic nanoparticle retained its magnetic properties following the modification process. Based on the Thermogravimetric Analysis (TGA) outcomes, it was evident that the structural integrity of the FPT nanocomposite remained unchanged at 200°C. The optimal pH was determined to be 5.5, and no alteration was observed following the immobilization process. Purified α-amylases usually lose their activity rapidly above 50°C. In this study, Bacillus licheniformis α-Amylase enzyme was covalently immobilized on the newly synthesized magnetic composite carrier having more azole functional group. For novelty-designed immobilized enzymes, while there is no change in the pH and optimum operating temperature of the enzyme with immobilization, two essential advantages are provided to reduce enzyme costs: the storage stability and reusability are increased. Furthermore, our immobilization technique enhanced enzyme stability when comparing our immobilized enzyme with the reference enzyme in industrial applications. The activity of the immobilized enzyme was higher in presence of 1-3% H2O2.


Assuntos
Bacillus licheniformis , Compostos de Epóxi , Nanopartículas de Magnetita , Metacrilatos , Triazóis , Enzimas Imobilizadas/química , Bacillus licheniformis/metabolismo , Peróxido de Hidrogênio , Nanopartículas de Magnetita/química , Concentração de Íons de Hidrogênio , Estabilidade Enzimática , alfa-Amilases/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...